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ABSTRACT

Speech processing algorithms are often developed demonstrating

improvements over the state-of-the-art, but sometimes at the cost of

high complexity. This makes algorithm reimplementations based on

literature difficult, and thus reliable comparisons between published

results and current work are hard to achieve. This paper presents a

new collaborative and freely available repository for speech process-

ing algorithms called COVAREP, which aims at fast and easy access

to new speech processing algorithms and thus facilitating research in

the field. We envisage that COVAREP will allow more reproducible

research by strengthening complex implementations through shared

contributions and openly available code which can be discussed,

commented on and corrected by the community. Presently CO-

VAREP contains contributions from five distinct laboratories and we

encourage contributions from across the speech processing research

field. In this paper, we provide an overview of the current offerings

of COVAREP and also include a demonstration of the algorithms

through an emotion classification experiment.

Index Terms— Speech processing, toolkit, glottal source, voice

quality, sinusoidal modeling, spectral envelope

1. INTRODUCTION

Over the past few decades, a vast array of advanced speech pro-

cessing methods have been developed, often offering significant im-

provements over the existing state-of-the-art. Such methods can

have a reasonably high degree of complexity, which has certain im-

plications. Firstly, as methods often consist of large blocks of code,

reimplementations by researchers may not be consistent with the

original version. This can significantly affect the behaviour of the

method. Secondly, dependencies between methods can be complex.

By combining methods together and building methods upon others,

the results become increasingly difficult to analyze and understand.

Indeed, the extensions and settings of the base methods are often su-

perficially described in new publications in favor of descriptions of

the newest contribution. Unfortunately, this can seriously affect the

comparability of evaluations between publications.

Existing toolboxes partly address this issue [1, 2, 3, 4, 5].

Thanks to them, researchers can access the developments of a given
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laboratory and safely build extensions based on known and repro-

ducible work. However, each existing toolbox is mainly the result

of a single laboratory’s work. From this approach, conventional

and straightforward methods can be re-implemented, as well as the

complex methods that are developed by the laboratory hosting the

toolbox. The drawback is that such toolboxes do not actively look

to compile complex algorithms developed by other laboratories. As

a consequence, the base of complex methods which are shared and

openly available is still fragile and many promising developments

have been under-exploited or discarded in the past, with researchers

tending to prefer conventional methods. To address this issue, a

collaborative approach for sharing methods seems necessary.

In this paper, we present the COVAREP project1, a collaborative

and freely available repository initially gathering works from five

laboratories. We envisage a range of benefits to the repository:
• Strengthening of complex methods implementations: Re-

searchers are welcome to include their original implementa-

tions, thus resulting in a single de facto version for the speech

community to refer to. The openly available methods will

build a solid basis encouraging researchers from a wide range

of speech-related disciplines to exploit them for their own

research works.

• More reproducible research: COVAREP will allow fairer

comparison of algorithms in published articles. Former

methods can also be re-implemented while allowing users to

discuss settings and method constituents which are not easily

reproducible from original publications.

• Participation and Feedback: As a GitHub project, users are

able to raise issues about bugs, suggest improvements, and

add novel methods. We welcome contributions from a wide

range of speech processing areas, including, but not limited

to: speech analysis, synthesis, recognition, conversion, trans-

formation, enhancement, voice quality analysis, expressive

speech processing, speaker recognition, etc.

In terms of Intellectual Property (IP), getting contributing insti-

tutions to agree to a homogeneous IP policy would be close to impos-

sible. As a result, COVAREP is a repository and not a toolbox, and

each method has its own license associated with it. Though flexible

to different license types, contributions need to have an open-source

license which is compatible with the repository (e.g. GPL/LGPL,

Apache). Further, to maintain a high standard, only published works

in well-known speech conferences and journals can be added to the

repository.

1http://covarep.github.io/covarep



A coding convention, though flexible enough not to discourage

participations, also ensures the intelligibility of the code and the nor-

malisation of its documentation. COVAREP is initially written in

the Matlabr language, a widely used language in speech analysis

and voice manipulation. However we strongly encourage authors

to make the code compatible with GNU Octave (octave.org) to

maximise usability. For more information, the reader is very wel-

come to visit the official website1 which details the procedure for

new contributions, the requirements for the license and the manage-

ment of the repository as a whole.

The impact of the COVAREP concept will obviously be demon-

strated over time. Nevertheless, in order to illustrate the current of-

fering of the project, experiments in emotion recognition are shown

in Section 3 using various analysis methods available in COVAREP.

Prior to this application, Section 2 will first present a non-exhaustive

overview of methods currently available in the repository.

2. ANALYSIS ALGORITHMS OF COVAREP

This section gives a description of the algorithms which have been

implemented so far in COVAREP. The interconnection between

these methods is shown in the workflow of Figure 1. Information

necessary to perform pitch-synchronous analysis is first extracted

from the speech signal: pitch tracking, polarity detection and deter-

mination of the Glottal Closure Instants (GCIs). These techniques

are presented in Section 2.1. The resulting information is generally

required to guarantee the high performance of subsequent methods:

spectral envelope estimation and formant tracking (Section 2.3),

sinusoidal modeling (Section 2.2), glottal analysis (Section 2.4) and

phase processing (Section 2.5).
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Fig. 1. Workflow of the methods implemented so far in COVAREP.

2.1. Periodicity and Synchronisation

2.1.1. Pitch tracking
Pitch tracking is one of the most fundamental problems in speech

analysis. Fundamental frequency (F0), which is the primary acoustic

correlate of pitch, is mainly affected by the frequency of vocal fold

vibration at the glottis and is used to represent the periodicity of the

speech signal.

F0 estimation from the speech signal is a non-trivial task con-

sidering the requirement of robustness that is needed in many speech

processing applications. Given the fact that F0 tracking has a very

long history, there exists a vast number of different estimation algo-

rithms. In COVAREP, a simple and robust pitch tracking algorithm is

included: the Summation of the Residual Harmonics (SRH) method

[6]. This method exploits the harmonic structure of the Linear Pre-

diction (LP) residual signal to estimate both F0 and voicing bound-

aries. SRH has been shown to be very robust to additive noise [6].

A large selection of different F0 estimation algorithms will enable

better possibilities for the development of other analysis tools.

2.1.2. Speech polarity detection
Speech polarity stems from the asymmetric excitation signal gen-

erated at the glottis, where the closure of the vocal folds creates a

sharp discontinuity to the waveform. This discontinuity, represented

as a sharp peak in the differentiated glottal flow signal, has a nega-

tive amplitude if the speech polarity is positive. Speech polarity has

no perceptually relevant effect for humans, but it may have a dra-

matic impact on the performance of various analysis and synthesis

techniques [7]. That is, among others, the case for the majority of

approaches for GCI estimation or glottal analysis. For this purpose,

COVAREP includes a speech polarity detection method based on the

skewness of the LP residual signal [7].

2.1.3. Glottal Closure Instant Detection

Glottal Closure Instants (GCIs) are defined as the pseudo-periodic

instants of significant excitation of the voice source [8]. Having

knowledge of the precise GCI locations is crucial to perform many

pitch-synchronous analysis procedures. COVAREP includes a state-

of-the-art GCI detection algorithm called SEDREAMS (Speech

Event Detection using the Residual Excitation And a Mean-based

Signal) [9], which was shown to be one of the most accurate and

robust GCI detection methods in [8]. Also a GCI estimation method

(SE-VQ) dedicated to detecting GCIs for non-modal phonation is

included [10]. A selection of GCI detection methods in COVAREP

will enable further work on pitch-synchronous analysis.

2.2. Sinusoidal Modeling

The periodicity resulting from the glottal excitation translates to a

harmonic structure in the speech spectrum. Thus, in the discrete

Fourier transform (DFT) of a short time window of voiced speech

signal (∼3 periods), peaks appear in the amplitude spectrum corre-

sponding to integer multiples of the fundamental frequency. These

peaks carry the perceptually most significant spectral content for

voiced speech and many models have been suggested for their rep-

resentation. The Sinusoidal Model (SM) [11] directly extracts the

amplitude peaks of the DFT spectrum; the Harmonic Model (HM)

makes use of a time domain least square solution [12]; the quasi-

harmonic model [13] assumes imperfect harmonicity; the adaptive

quasi-harmonic model [14], the Adaptive Harmonic Model (aHM)

and the extended adaptive quasi-harmonic model [15] allow fre-

quency and amplitude demodulation during the estimation of the

parameters, which provides accurate sinusoidal parameter estimates

and high perceived quality of the reconstructed signal [16]. In CO-

VAREP, a simple and unified interface allows the representation of

speech signal using SM, HM or aHM models. Resynthesis is also

possible through overlap-add or harmonic synthesis. Finally, by

exploiting sinusoidal and harmonic model parameters, more abstract

models can be built, such as spectral envelopes [17] or glottal flow

parametrization [18, 19].

2.3. Spectral Envelope Estimation and Formant Tracking

Estimation of the amplitude spectral envelope is a recurrent subject

in speech processing for approximation of the vocal tract filter re-

sponse. COVAREP includes an estimator of the so called “true-

envelope” (TE) [20, 21, 22]. This envelope is computed directly

on the spectrum of the DFT of a windowed speech signal. On the

same spectrum, amplitude peaks can also be extracted providing

sinusoidal or harmonic representation, as mentioned above. Sinu-

soidal and harmonic representations can then be used to estimate dis-

crete envelope, like the Discrete All-Pole (DAP) [17] (also available

in COVAREP) which assumes that the vocal tract response obeys an

Auto Regressive (AR) model (see illustration in Fig. 2, top panel).

Also temporally weighted LP methods are included in COVAREP,

such as WLP [23], SWLP [24], and XLP [25], which aim at tem-

poral emphasis of those parts of a speech frame that are most likely



to correspond to the vocal tract response, thus being more robust to

additive noise or the interfering effect of the excitation harmonics.

Although the aforementioned techniques for spectral enve-

lope estimation could be used to determine formant trajectories,

COVAREP integrates a dedicated formant tracker whose perfor-

mance has been shown to outperform the state-of-the-art [26]. This

algorithm is based on processing the negative derivative of the ar-

gument of the chirp-z transform (termed as the differential phase,

or group-delay spectrum). Note that no modeling is included in

the procedure, but only peak picking on group delay spectrum.

This method is effective at tracking high-order formants due to its

enhanced resolution.

2.4. Glottal Analysis

2.4.1. Glottal Flow Estimation

Glottal flow (GF) estimation, also referred to as source-filter sep-

aration, is the process of estimating the vocal-tract (VT) and GF

components from a speech signal. Separating these contributions is

important as it enables their distinct characterisation and modeling,

which is motivated by both physiological and perceptual considera-

tions. It is important to note that GF estimation is different from the

process of estimating the LP spectrum of speech and then using the

inverse of the LP filter to get a residual signal. The difference is that

LP residue spectrum is white, whereas the GF excitation exhibits the

spectral characteristics of the voice source (e.g. spectral tilt and glot-

tal formant). This distinction is important in many fields, such as the

study of speech production and voice quality characterisation.

There are various ways to estimate the glottal flow signal (for a

review, see e.g. [27, 28, 29]). COVAREP includes two of the most

representative techniques for GF estimation: Iterative Adaptive In-

verse Filtering (IAIF, [30]) and Complex Cepstrum-based Decom-

position (CCD, [31]). IAIF is based on repetitively applying low

and high-order LP and using inverse of the filters to estimate the GF

signal and the VT filter. IAIF has been used and evaluated in various

experiments (see e.g. [32, 33, 29]) and it has been shown to yield

rather robust estimates of the GF. IAIF can be performed either syn-

chronously to given GCIs or asynchronously. COVAREP includes

implementations of both variants. Fig. 2 (bottom panel) shows an

extracted GF derivative waveform along with GCIs detected using

SEDREAMS. The second technique, CCD [31], is a non-parametric

approach which exploits the phase properties of the speech signal to

separate its GF and VT components: while the VT is a minimum-

phase system, the GF open phase is know to be a maximum-phase

(i.e. anticausal) signal [34].

GF estimation is a difficult blind separation problem since nei-

ther the VT response nor the GF contribution are actually observable.

The research field of GF estimation in particular may benefit from

the COVAREP philosophy. Indeed, there is a clear need for easy and

fair comparisons to allow a better understanding of the complexity

of the voice source and to encourage the development of more robust

voice source analysis algorithms.

2.4.2. Glottal Flow Parameterisation

Since GF has an important contribution to the supra-segmental char-

acteristics of speech and is known to significantly vary with changes

in phonation type, glottal flow parameterisation finds useful applica-

tions in many areas of speech research. COVAREP includes algo-

rithms for extracting several commonly used GF parameters: NAQ

[35], QOQ [36], H1–H2 [37], HRF [38], and PSP [39]. Also a col-

lection of new algorithms are included, such as the estimation of

maxima dispersion quotient (MDQ) [40] and peak slope parame-

ter [41], and the estimation of the Rd shape parameter [42] of the

Liljencrants-Fant (LF) glottal model [43] using the Mean Squared

Phase (MSP) method based on MSPD2 [18, 19]. Also, a method for

detecting creaky voice from speech signal is included and arose from

a sequence of developments [44, 45, 46]. The specific algorithm in-

cluded here is that described in [44] and involves the extraction of

features related to the residual excitation with classification carried

out using an artificial neural network (ANN).
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Fig. 2. Example showing analysis of a short speech segment using

basic functionalities of COVAREP: DAP spectral envelope represen-

tation (top panel) and glottal flow derivative estimation along with

glottal closure instants (bottom panel).

2.5. Phase Processing

Whereas the spectral amplitude information varies smoothly across

time, the phase information is more complex to handle. Indeed, the

integral of the frequency constantly wraps the phase values across

time which makes the extraction of meaningful phase information

difficult. Nevertheless, the perceived components of the phase infor-

mation have been studied and measured [47, 48] and, by necessity,

phase modeling is a recurrent subject in all speech synthesis applica-

tions. Recently, the Relative Phase Shift (RPS) has been suggested

for the evaluation of perceptual importance of phase information in

speech and also for speaker verification [49, 50, 51]. Its frequency

derivative, the Phase Distortion (PD), which also assumes removal

of the amplitude envelope minimum-phase, has been also suggested,

first for glottal parameter estimation [52], then for emotional valence

detection [53]. COVAREP includes both RPS and PD measurements

in a simple function. The Chirp Group Delay (CGD) representation,

proposed in [54], relies on a chirp (i.e the Fourier transform is evalu-

ated on a contour in the z-plane different from the unit circle) analy-

sis of the zero-phase version of the speech signal. This approach was

shown to provide a high-resolved representation of formant peaks,

and is the basis of the formant tracker presented in Section 2.3. Note

that variations of the CGD were shown to be particularly suited to

highlighting irregularities in phonation, and therefore for detecting

voice disorders [55]. Pooling advances in phase processing in an

open repository will definitely help to better understand and handle

phase information in all speech processing techniques.



3. EXPERIMENTAL WORK – EMOTION RECOGNITION

In order to illustrate the usefulness of the features of COVAREP pre-

sented in Section 2, we carry out feature assessment and classifi-

cation experiments on an emotion speech database. Note that this

serves purely as an illustration and not as a comprehensive evalua-

tion of the offerings of the repository.

3.1. Speech data

The speech data used here is the Berlin database of emotional

speech. The database contains utterances spoken in 7 different acted

emotions (neutral, boredom, sadness, disgust, fear, anger, happi-

ness) by 10 professional actors (both male and female) and can be

downloaded from: http://pascal.kgw.tu-berlin.de/

emodb/. Two separate labelling schemes are used: 1) emotion vs

neutral and 2) three levels of activation {passive, neutral, active}.

3.2. Feature extraction and assessment

A set of features based on COVAREP algorithms are extracted from

each utterance (using COVAREP v1.1.0). As a baseline comparison,

we include 12 MFCCs (excluding the energy-related 0th coefficient)

extracted on 25-ms frames with a 5-ms shift. We also extract an al-

ternative set of MFCCs (TE-MFCCs) which are extracted from the

True Envelope spectral representation rather than from FFT. A set

of features are derived from the glottal source signal estimated by

glottal inverse filtering (based on GCI-synchronous IAIF). These in-

clude: NAQ, QOQ, PSP and H1–H2. Two wavelet based features

(peakSlope and MDQ) as well as Rd derived by phase minimisa-

tion are also extracted. Note that the Rd confidence measure is also

included. Finally, the posterior probability of the creaky voice de-

tection algorithm is included as an additional feature. Note that pa-

rameter contours are sampled simply as the median value in voiced

regions (as detected by the SRH algorithm) for each sentence.

In order to investigate the discriminative power of the features

included, we carry out an initial mutual information based feature

assessment using the method described in [56]. Figure 3 shows the

top 10 discriminative features (of emotion vs neutral) in terms of

their relative intrinsic information. The peakSlope is found to be the

most discriminative feature, followed by the first TE-MFCC coeffi-

cient. Interestingly, the confidence measure associated with the Rd

parameter is also found to have discriminative qualities for emotion

vs neutral speech.
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Fig. 3. Top 10 features in terms of relative intrinsic information.

3.3. Classification experiments

We carry out two speaker-independent classification experiments,

one for emotion vs neutral (binary) and one using the activation

labels (3-class). Five feature set variants are used: MFCCs, TE-

MFCCs (MFCCs derived from True Envelope spectral representa-

tion), glottal/VQ (glottal source and voice quality related features),

ALL (TE-MFCC and glottal/VQ combined), SEL (top 10 discrim-

inative features selected from ALL set). We use support vector

machines (SVMs) as our classifier, utilising a radial basis function

(RBF) kernel. For the 3-class classification, a one-against-one setup

is employed. All classification experiments involve a speaker in-

dependent, leave-one-speaker-out procedure where the classifier is

trained on all but one speaker’s data, and are then tested on the

held-out data. The held-out speaker is then rotated until all speakers

have been covered.

The results of the experiments in terms of error (%) are shown in

Figure 4. For both classification experiments, the TE-MFCCs pro-

vide lower mean classification error compared to standard MFCCs.

The iterative cepstral smoothing of the TE spectral envelope repre-

sentation may be beneficial for making the spectral coefficients less

biased towards harmonics and, hence, more independent of varia-

tion in F0. For the emotion vs neutral (binary) experiment, the glot-

tal/VQ features provide the highest mean classification error. How-

ever, closer inspection reveals that the MFCC classification is ex-

tremely biased towards the emotion class (mean error for neutral:

48 %, emotion: 82 %), whereas the Glottal/VQ result is much more

balanced (mean error for neutral: 82 %, emotion: 73 %). Similarly,

the ALL set results in highly biased results, whereas the SEL set is

more biased but with a comparatively low error (18 %). Note that

attempts to force a balance between the two classes in the data did

not alleviate this bias problem.

For the activation (3-class) experiment, the glottal/VQ features

provide the lowest mean error (26 %). Combination with the spectral

features, even with feature selection, does not improve the classifi-

cation. This demonstrates that the glottal/VQ features are effective

at discriminating laxness (typically found in low activation emotion)

and tenseness (in high activation) in the speech data.
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Fig. 4. Classification error (%) for emotion vs neutral (binary) and

activation (3-class) classification experiments, plotted as a function

of feature set variants. Data is expressed as mean ± standard error

of the mean.

4. CONCLUSION

This paper presented a new repository for open-source speech pro-

cessing algorithms called COVAREP. The main motivations for de-

veloping this repository are: to facilitate fair and reproducible re-

search by having single de facto code versions of published algo-

rithms, to improve the visibility and availability of newly developed

state-of-the-art algorithms, and to encourage feedback and bug re-

ports to improve the overall quality of the algorithms. An overview

of the main algorithms currently available in COVAREP was pre-

sented, that arose from the contributions of 5 separate laboratories.

Although the success of COVAREP will be judged over time, a small

experimental procedure based on emotion recognition illustrated the

potential of both glottal and voice quality related features as well as

novel spectral envelope representations contained within COVAREP.

Finally, we encourage researchers to consider contributing their pub-

lished open-source algorithms to this project. We envisage that this

platform can bring about significant improvements in the effective-

ness and impact of speech processing research.



5. REFERENCES

[1] M. Brookes et al., “VOICEBOX: Speech processing toolbox for MATLAB,” [On-
line], 2005, http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html.

[2] K. Tokuda and K. Oura et al., “Speech signal processing toolkit (SPTK),” [On-
line], recent version 2012, http://sp-tk.sourceforge.net.
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